Biosafety Standards and Common Protocols in Lab Animal Science

Guglielmo Vismara

TOPICS

- Principles of biosafety: risk classification and assesment
- Primary and Secondary barriers: examples
- Biological risk inside the Animal lab: evaluations and examples
- Biosafety cabinets: principles and good practices
- Design of Biocontainment Labs

1. Principles of Biocontainment

- Biological risk: risk associated to biological agents
 Microorganisms, Animals manipulation, Allergens...
- Invisible risk, it could be underestimated

- It must be assessed by experienced and responsible people (biosafety officer), for evaluation of the optimal working conditions
- Risk = probability of accident x consequence of accident
- The risk is always present. It can be minimized but never eliminated at all
- The **prevention is multi-factorial**: building construction, equipment, procedures, training of personnel are all important and all to be evaluated

Guidelines - References

The biological agents risk classifications

- Micobacterium Tuberculosis: level 3 (CDC-NIH)
- Avian Influenzae H5N1: level 2/3 (CDC), level 3 (NIH)
- Human adherent cancer cells: generally level 2
- Herpes, Papilloma, Citomegalovirus: level 2

The Risk is Classified – The Lab is Classified

Serious and potentially lethal infection

ABSL-1 Defined organisms Not known to cause disease in healthy adults Basic **Facility ABSL-2** Moderate-risk agents present Disease of varying severity **ABSL-3** Indigenous or exotic agents, aerosol transmission Serious and potentially lethal infection **Containment Facility ABSL-4** Dangerous or exotic high risk agents, Aerosol transmission

Risk Assesment

Evaluation of the risk

Multiple Factors

Managment of the risk

Validation and surveillance

Corrective actions

Risk Management- examples

- 1) Prevention: decreases the probability of accidents.

 Training to personnel, choice of the right equipment, room ventilation,...
- **2) Protection:** reduces the damage magnitude. PPE, equipment, SOPs...
- 3) Managing the emergencies
 First aid protocol, SOPs, training to people

Example: personnel heart attack

- Who can assist
- Who can enter the containment lab
- What procedure to take the person to the hospital/first aid
- How to decontaminate the patient, his clothes
- How to react fast

Risk Management

To involve all the aspects in the lab activities

- Equipment choice, and best use
- Organization of the room layouts
- Organization of logistic in the room
- Evaluate the people and material flow in the vivarium
- Write and "publish" the SOPs
- Train of people

2. Primary and Secondary Barriers

Primary barrier:

- first protective barrier from biohazard to the operators
- to protect people and environment close to the source of contamination
- physical shield

Biosafety cabinet, animal ventilated/sealed cage, tube, centrifuge...

Every equipment must be associated with SOPs to be an effective barrier

Primary barriers

Can be considered at different levels

Primary barriers

In many animal studies Personal Protection Equipment (PPE) forms the primary barrier between personnel and the infectious agent.

PPE's:

Gloves
Coats/Gowns
Respirators
Goggles
Face shields
Shoe covers

Secondary barriers

Depend on the transmission risk of agents used.

The design, engineering and construction of the facility provides protection for the laboratory workers' & provides a barrier to protect persons outside the laboratory.

3. ABSL3 vivarium: what's "HOT"???

BSL3 vivarium: what's "HOT"???

BSL3 vivarium: what's "HOT"???

BSL3 vivarium: what's "HOT"???

4. Biosafety Cabinets

- Very important equipment for procedures/animal cage change/biological agents manipulation
- Mandatory for BSL and ABSL > 1
- Certified equipment, requires training and ability to use
- Laminar Flow, protects product, people and environment under specific certifications

Biosafety Cabinets

Certification BSC class II

- European normative: EN12469
- American NSF49

Classes of Biosafety Cabinets

- Class I = total air exhaust (100%)
- Class II = air is partially recirculated
- Class III = glove box, closed cabinet

Some BSL3 Layouts

Primary barriers:

Similar to BSL-2 personal protective equipment

Respiratory equipment if risk of infection through inhalation

Secondary barriers:

- Autoclave inside
- Corridors separated from direct access to lab
- Access through self-closing doubles doors, locked
- Air handling systems to ensure negative air flow (air flows into the lab)
- BSC II or BSC III

Guidelines

= Required by BMBL (5th ed.)

O= Not required by BMBL (5th ed.), however, generally considered as an enhancement

Thanks for your attention!

